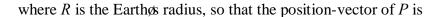
Define a 3-dimensional rectangular cartesian coordinate system with its origin O at the centre of the Earth, and the equator lying in the xy-plane, and let the x-axis pass through the point where the Greenwhich meridian intersects the equator. The angles ϕ , λ in the diagram are the latitude and longitude respectively of the point P and the cartesian coordinates of P will be

$$x = R \cos \phi \cos \lambda$$

$$y = R \cos \phi \sin \lambda$$

$$z = R \sin \phi$$



$$\mathbf{P} = OP = R\cos\phi\cos\lambda\,\mathbf{i} + R\cos\phi\sin\lambda\,\mathbf{j} + R\sin\lambda\,\mathbf{k}.$$



If N' and S' are the north and south magnetic poles, then by simple vector algebra

$$OS' + S'N' = ON'$$

i.e.

$$S'N' = ON' \quad OS'$$

$$= R(\cos\phi_1\cos\lambda_1 \quad \cos\phi_2\cos\lambda_2)\mathbf{i} + R(\cos\phi_1\sin\lambda_1 \quad \cos\phi_2\sin\lambda_2)\mathbf{j} + R(\sin\phi_1 \quad \sin\phi_2)\mathbf{k},$$

where (ϕ_1, λ_1) and (ϕ_2, λ_2) are the geodetic positions (i.e. the latitudes and longitudes) of the north and south magnetic poles, respectively. The magnitude of this vector is

$$|S'N'| = R\sqrt{(\cos\phi_1\cos\lambda_1 - \cos\phi_2\cos\lambda_2)^2 + (\cos\phi_1\sin\lambda_1 - \cos\phi_2\sin\lambda_2)^2 + (\sin\phi_1 - \sin\phi_2)^2}$$

$$= R\sqrt{2\{1 - \sin\phi_1\sin\phi_2 - \cos\phi_1\cos\phi_2\cos(\lambda_1 - \lambda_2)\}}$$

and, to find the angle θ between the line joining the magnetic poles and the axis of rotation, we must form the scalar product of this vector with the unit vector \mathbf{k} (which coincides with the axis of rotation). We obtain

$$R(\sin \phi_1 \quad \sin \phi_2) = |S'N'| \times 1 \times \cos \theta$$

i.e.

$$\cos \theta = \frac{\sin \phi_1 - \sin \phi_2}{\sqrt{2\{1 - \sin \phi_1 \sin \phi_2 - \cos \phi_1 \cos \phi_2 \cos (\lambda_1 - \lambda_2)\}}}$$

Using the positions established by the 2001 surveys, i.e.

$$\phi_1 = +81^{\circ} \cdot 3, \lambda_1 = 110^{\circ} \cdot 8$$

and

$$\phi_2 = 64^{\circ} \cdot 7, \lambda_2 = +138^{\circ} \cdot 0.$$

we find that

$$\cos\theta = \frac{1.89258}{\sqrt{3.83411}} = \frac{1.89258}{1.95809} = 0.96654$$

and so
$$\theta = 14^{\circ} \cdot 86286 \text{ é } 14^{\circ}52.$$

Any point P lying on the line joining two other points P_1 (x_1, y_1, z_1) and P_2 (x_2, y_2, z_2) will have coordinates

for some u, and the square of that point x distance from another point P_0 with coordinates (x_0, y_0, z_0) will be

$$s^{2} = \{(x_{1} \quad x_{0}) + (x_{2} \quad x_{1})u\}^{2} + \{(y_{1} \quad y_{0}) + (y_{2} \quad y_{1})u\}^{2} + \{(z_{1} \quad z_{0}) + (z_{2} \quad z_{1})u\}^{2}.$$

The minimum value of s^2 occurs at the point on P_1P_2 closest to P_0 and so, to find that point, we must solve

$$\frac{\mathbf{U}}{\mathbf{L}\mathbf{h}}(s^2) = 0$$

for *u*. Now,

$$\frac{\dot{\mathbf{U}}}{\dot{\mathbf{U}}}(s^2) = 2(x_2 \ x_1)\{(x_1 \ x_0) + (x_2 \ x_1)u\} + 2(y_2 \ y_1)\{(y_1 \ y_0) + (y_2 \ y_1)u\} + 2(z_2 \ z_1)\{(z_1 \ z_0) + (z_2 \ z_1)u\}$$

$$= 2\{(x_2 \ x_1)(x_1 \ x_0) + (y_2 \ y_1)(y_1 \ y_0) + (z_2 \ z_1)(z_1 \ z_0)\} + 2\{(x_2 \ x_1)^2 + (y_2 \ y_1)^2 + (z_2 \ z_1)^2\}u$$

and the point on P_1P_2 closest to P_0 is therefore given by

$$u = \frac{(x_2 - x_1)(x_1 - x_0) + (y_2 - y_1)(y_1 - y_0) + (z_2 - z_1)(z_1 - z_0)}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

and its coordinates will be

$$x' = x_{1} \quad (x_{2} \quad x_{1}) \frac{(x_{2} \quad x_{1})(x_{1} \quad x_{0}) + (y_{2} \quad y_{1})(y_{1} \quad y_{0}) + (z_{2} \quad z_{1})(z_{1} \quad z_{0})}{(x_{2} \quad x_{1})^{2} + (y_{2} \quad y_{1})^{2} + (z_{2} \quad z_{1})^{2}}$$

$$y' = y_{1} \quad (y_{2} \quad y_{1}) \frac{(x_{2} \quad x_{1})(x_{1} \quad x_{0}) + (y_{2} \quad y_{1})(y_{1} \quad y_{0}) + (z_{2} \quad z_{1})(z_{1} \quad z_{0})}{(x_{2} \quad x_{1})^{2} + (y_{2} \quad y_{1})^{2} + (z_{2} \quad z_{1})^{2}}$$

$$z' = z_{1} \quad (z_{2} \quad z_{1}) \frac{(x_{2} \quad x_{1})(x_{1} \quad x_{0}) + (y_{2} \quad y_{1})(y_{1} \quad y_{0}) + (z_{2} \quad z_{1})(z_{1} \quad z_{0})}{(x_{2} \quad x_{1})^{2} + (y_{2} \quad y_{1})^{2} + (z_{2} \quad z_{1})^{2}}$$

If we take P_1 and P_2 as the positions of the Earthos magnetic poles in 2001 (i.e. $81^{\circ}\cdot 3N$, $110^{\circ}\cdot 8W$ and $64^{\circ}\cdot 7S$, $138^{\circ}\cdot 0E$), we find that their cartesian coordinates (in units of the Earthos radius R) were

$$x_1 = 0.05371, y_1 = 0.14140, z_1 = +0.98849$$
 for the north magnetic pole and

 $x_2 = 0.31759, y_2 = +0.28596, z_2 = 0.90408$ for the south magnetic pole,

and the point P' on the magnetic axis closest to the centre of the Earth (x = 0, y = 0, z = 0) was

$$x' = 0.18565, y' = +0.07228, z' = +0.04221$$
 (again in units of the Earthos radius R).

The distance of this point from the centre of the Earth is

$$R\sqrt{(x')^2 + (y')^2 + (z')^2} = 0.20365R \text{ é } 1,300 \text{ km}.$$